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HYBRID CAM ASSISTED DEFLATE
DECOMPRESSION ACCELERATOR

FEDERALLY SPONSORED RESEARCH

This invention was made with Government support under
FA8650-13-3-7338 awarded by the Department of Defense.
The Government has certain rights in this invention.

The present disclosure generally relates to information
processing and, more specifically, relates to hybrid CAM
assisted deflate decompression accelerator.

BACKGROUND

Content addressable memory is a type of computer
memory that permits high speed searching operations. A
CAM may search its entire memory in a single search opera-
tion responsive to receiving a data word. If the data word is
found, the CAM returns a list of one or more storage
addresses where the word was found. Thus, a CAM may be a
hardware embodiment of an associative array.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of examples,
and not by way of limitation, and may be more fully under-
stood with references to the following detailed description
when considered in connection with the figures.

FIG. 1 illustrates a decompression system for performing
data decompression of a compressed stream, in accordance
with embodiments.

FIGS. 2A-C illustrate example header data for various
encoded data streams, in accordance with embodiments.

FIG. 3 illustrates a block diagram of a decompression
pipeline in accordance with embodiments.

FIG. 4 illustrates an example hybrid CAM architecture in
accordance with some embodiments.

FIG. 5A illustrates an example CAM and register file archi-
tecture that permits simultaneous symbol lookup and content
fetch, in accordance with embodiments.

FIG. 5B illustrates a timing diagram for simultaneous sym-
bol lookup and content fetch, in accordance with embodi-
ments.

FIG. 5C illustrates an example entry in a register file that is
integrated in a CAM in accordance with embodiments.

FIG. 6 illustrates a decoder for simultaneous address and
code generation in accordance with embodiments.

FIG. 7 illustrates a circuit diagram of a 12 transistor static
NAND type binary CAM cell in accordance with embodi-
ments.

FIG. 8 illustrates match merging circuit 800 in accordance
with some embodiments.

FIG. 9 illustrates a diagrammatic representation of a
machine in the example form of a computing system accord-
ing to embodiments.

FIG. 10 illustrates a block diagram of a multiprocessor
system in accordance with an embodiment.

FIG. 11 illustrates a system on-chip (SOC) design in accor-
dance with embodiments.

FIG. 12 is a block diagram of the micro-architecture for a
processor according to embodiments.

FIG. 13 is a block diagram of a single core processor and a
multicore processor with integrated memory controller and
graphics according to embodiments.

FIG. 14 illustrates a diagrammatic representation of a
machine in the example form of a computing system accord-
ing to embodiments.
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FIG. 15 illustrates a block diagram of an example computer
system according to embodiments.

FIG. 16A is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline according to at least one embodiment of the
disclosure.

FIG. 16B is a block diagram illustrating an in-order archi-
tecture core and a register renaming logic, out-of-order issue/
execution logic to be included in a processor according to at
least one embodiment of the disclosure.

DETAILED DESCRIPTION

The present disclosure relates to data decompression.
Decompression may be performed using various techniques
and algorithms. There are a variety of string processing tech-
niques and hardware designs that may be used for data
decompression. Any algorithm, technique or combination
thereof may be used to implement the present disclosure. For
ease in explanation and by way of example, the present dis-
closure is described using the DEFLATE algorithm, Huffman
encoding/decoding techniques and the LZ77 algorithm as
specified by RFC 1951. DEFLATE is a sliding window based
algorithm that compresses common substrings of characters
with references in a large sliding window of history.

The DEFLATE algorithm is an efficient lossless data com-
pression algorithm that uses a combination of the L.Z77 algo-
rithm and Huffman encoding (DEFLATE Compressed Data
Format Specification version 1.3, Deutsch et al., Network
Working Group RFC 1951, May 1996, “RFC-1951"). In
DEFLATE compression, a file is divided into a sequence of
data blocks and each data block is compressed separately. An
end-of-block symbol is used to denote the end of each block.
The 1.Z77 algorithm contributes to DEFLATE compression
by allowing repeated character patterns to be represented with
(length, distance) symbol pairs where a length symbol repre-
sents the length of a repeating character pattern and a distance
symbol represents its distance, in bytes, to an earlier occur-
rence of the pattern. If a character pattern is not represented as
a repetition of its earlier occurrence, it is represented by a
sequence of literal symbols corresponding to 8-bit byte pat-
terns.

In DEFLATE, a compressed data set includes a series of
blocks, corresponding to successive blocks of input data. The
block sizes are arbitrary, except that non-compressible blocks
are limited to 65,535 bytes. Each block is compressed using a
combination of the .Z77 algorithm and Huffman coding,
which includes generating at least one Huffman tree for each
block. The Huffman trees for each block are independent of
those for previous or subsequent blocks and the 1.Z77 algo-
rithm may use a reference to a duplicate string occurring in a
previous block. The duplicate string may include a portion of
the earlier processing string (e.g., up to 32K input bytes
before the current string) and may be stored in a buffer.

Each block includes of two parts: a pair of Huffman code
trees that describe a representation of a compressed payload,
and the compressed payload itself. The Huffman trees them-
selves may also be compressed using Huffman encoding. The
compressed data includes a series of elements of two types:
literal bytes (of strings that have not been detected as dupli-
cated within the previous 32K input bytes) (referred to as
“literal” or “literals), and pointers to duplicated strings, where
apointer is represented as a pair (length, backward distance).
Conventionally, the representations may be limited to dis-
tances of 32K bytes and lengths of 258 bytes. The limited size
of'a representation, however, may not limit the size of a block,
except for uncompressible blocks, which may be limited.
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Each type of value (literals, distances, and lengths) in the
compressed data may be represented using a symbol (e.g., a
Huffman code), using one code tree for literals and lengths
and a separate code tree for distances. The code trees for each
block appear in a compact form just before the compressed
data for that block.

Conventionally, the values (literals, distances, and lengths)
may be stored in a content-addressable memory (CAM).
When decompressing an incoming data stream that is
encoded (e.g., Huffman encoded), a decoder receives a sym-
bol of the data stream and performs a look-up operation in the
CAM to identify a match for the symbol. The symbol can
correspond to a literal value or a length value. Conventionally,
the lookup tables may be large and a lookup operation may
take an excessive amount of time (e.g., long latency) as it
searches the large lookup table. Further, conventional sys-
tems may use a full ternary CAM (TCAM) array to store data,
which may take up a larger area on a circuit than other types
of CAMs.

Embodiments of the present disclosure address these and
other shortcomings by providing a hybrid CAM assisted
DEFLATE decompression accelerator. In embodiments, the
hybrid CAM includes different CAM types that may operate
at different speeds and may use a different physical area. For
example, a TCAM lookup may take longer than a binary
CAM (BCAM) lookup because a TCAM lookups entail look-
ing up ones, zeroes and “don’t care,” while a BCAM looks up
ones and zeroes. Also, because TCAMSs have ones, zeroes and
“don’t care” values, they may have a larger area as compared
to other CAM, such as a BCAM that only has ones and zeroes.
The present disclosure relates to a hybrid CAM that takes
advantage of different CAM types and their respective sizes
to decrease overall CAM area while improving CAM perfor-
mance. In some embodiments, the CAM may be partitioned
and each partition may be simultaneously searched for a
match, which may also improve CAM lookup performance.
In some embodiments, a register file is integrated into the
CAM which enables the CAM to provide data directly from
the CAM instead of providing an address to the data that is
stored in another location. This may reduce a number of
operations needed for decompression.

FIG.1 illustrates a decompression system 100 for perform-
ing data decompression of a compressed stream 116 includ-
ing decompression according to DEFLATE, in accordance
with embodiments. However, one or more of the components
may be re-tasked such that the components perform another
type of decompression. Additionally, one or more of the com-
ponents may be combined or further split up. The decompres-
sion system 100 includes a DEFLATE accelerator 102, clock
control 104, replay logic 105, a decoder 106, at least one
content addressable memory (CAM) 108 and a core 120. The
components of FIG. 1 can reside on “a common carrier sub-
strate,” such as, for example, an integrated circuit (“IC”) die
substrate, a multi-chip module substrate or the like. Alterna-
tively, the core 120 may reside on one or more printed circuit
boards, such as, for example, a mother board, a daughter
board or other type of circuit card. In other embodiments, the
CAM 108 and the core 120 can reside on the same or different
carrier substrates.

The DEFLATE accelerator 102 may be a de-compressor
unit that may receive a compressed data stream 116. The
compressed data stream 116 may include one or more com-
pressed bits. In embodiments, the compressed data stream
116 was compressed by a data compression system (not
shown). The CAM stores code words associated with the
compressed data stream 116 and their relationship to respec-
tive symbols in one or more lookup tables, as further
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4

described in conjunction with FIG. 4. The CAM receives the
compressed data stream 116, and matches portions of the
compressed data stream 116 to the code words stored in the
CAM. When a portion of the compressed data stream 116
matches a stored code word, the CAM accesses a register file
and outputs the data. In some embodiments, the CAM outputs
the data without accessing a RAM. The CAM may be any
type of CAM, including a BCAM or a TCAM. A BCAM may
support two logical states, zero and one, while a TCAM may
additionally support a third, “don’t care” logical state. As
illustrated, the decompression system comprises three
CAMs: a code length CAM (CLCAM) 110, a literal/length
CAM (LLCAM) 112 and a distance CAM (DCAM) 114. Any
of'these CAMs may be subdivisions of a single CAM. Alter-
natively, each of the CAMs may be separate. Further, any of
the CAMs may be any type of CAM, such as a BCAM or a
TCAM. A CAM may also be a combination of two CAM
types. For example, the LLCAM can include TCAM cells and
BCAM cells, as described herein. Though techniques pre-
sented in this document will be primarily presented in the
context of the LLCAM, they can be applied to DCAM and
CLCAM as well.

The clock control 104 can manage a clock speed of a
processor (e.g., core 120). The clock control logic 104 can
speed up the clock speed for frequent, smaller codes accesses.
For example, the clock control logic 104 may set a faster
clock speed for lookups in a first portion of a CAM (e.g., a
9-bit portion) and may set a slower clock speed for lookups in
a second portion of the CAM (e.g., a 6-bit portion).

The replay logic 105 may identify a “miss” in a lookup
operation. After a “miss,” the replay logic may interact with
the clock control logic 104 to slow down the clock speed (e.g.,
divide by two), and replay (i.e., perform again) the same
lookup operation.

The decoder 106 may construct a lookup table from the
compressed stream, such as by using Huffman decoding tech-
niques. The decoder 106 can store the lookup table in one or
more CAMs. For example, the decoder 106 may store code
length datain CLCAM 110, literal and length data in LLCAM
112 and distance data in DCAM 114. The decoder 106 uses
the one or more lookup tables (e.g., LZ77 tables) to decode
either (length, distance) pairs or literals from the compressed
data stream 116. In some embodiments, the decoder includes
different Huffman tables of symbols. These tables are index
addressable and the indexes may be created by the decoder
itself or another component. In an embodiment, the decoder
includes a 4 kB lookup table. Once identified, the decoder 106
may provide the (length, distance) pairs or literals to the core
120.

The core 120 may be any type of processor, including a
general purpose microprocessor, such as a processor in the
Intel® Pentium® Processor Family, Intel® Xeon® Processor
Family, Intel® Core™ Processor Family, or other processor
family from Intel® Corporation, or another processor from
another company, or a special purpose processor or micro-
controller. Core 120 may include multiple threads and mul-
tiple execution cores, in any combination. In one embodi-
ment, the core 120 is integrated in a single integrated circuit
die having multiple hardware functional units (hereafter
referred to as a multi-core system). The multi-core system
may be a multi-core processor package, but may include other
types of functional units than just processor cores. Functional
hardware units may be processor cores, graphics cores (also
referred to as graphics units), voltage regulator (VR) phases,
input/output (1/0) interfaces (e.g., serial links, DDR memory
channels) and their controllers, network controllers, fabric
controllers, or any combination thereof.
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The interface logic 122 of the core 120 may include any
circuitry, logic, or other hardware, software, firmware, or
structures to process encoded and/or compressed data. The
interface logic 122 receives the (length, distance) pairs or
literals. The interface logic 122 may convert DEFLATE raw
outputs (e.g., literals, lengths, distances) into processor com-
patible instructions (e.g., loads, stores) to build an uncom-
pressed stream. The interface logic 122 may also handle
backpressure and buffer space management and may assert a
stall on the DEFLATE accelerator 102 when the core 120 is
not ready to consume more DEFLATE outputs. For literals,
the interface logic 122 writes the literal to the buffer 124. The
interface logic 122 may also provide the literal in the output
stream 126. In some embodiments, the buffer 124 includes
the most recent 32 KB history of the output stream.

In some embodiments, the CAM 108 may be any storage to
store information, including data and/or instructions, in an
information processing system, such as a register, a cache, or
another type of memory structure. Such a storage structure
may include any data storage structure (not shown) to store
data or other information related to values generated during
decompression. Alternatively, the storage structure may be
included anywhere else in system 100. Data storage structure
may include any type of individual storage elements, such as
latches or flip-flops, to store bits of data.

FIGS. 2A-C illustrate example header data 200, 240 and
260 for various encoded data streams, in accordance with
embodiments. The header data 200, 240 and 260 includes
information that may be used to generate codes for literals and
lengths/distances. This information may be stored in the
CAM 108 of FIG. 1 and may later be used to decompress a
payload. In FIG. 2A, the header data 200 may include B
FINAL 202, B TYPE 204, LEN 206 and NLEN 208. In
embodiments, the header data 200 is used along with a por-
tion of the payload 210 to generate one or more Huffman
codes, which may be stored in a CAM.

B FINAL 202 is a one bit indicator that a data block is the
final block in the compressed data. At the last block in the data
stream, B final should be set. B TYPE 204 is a two bit
indicator of the type of encoding that was used for the block.
Since the B TYPE 204 is two bits, there are four possible
values. For example, 00 can indicate that the block has not
been compressed. A decoding system can use this indicator to
refrain from creating lookup tables for the block. Moreover, a
“00” B TYPE 204 can indicate to the decoding system to
provide or print out the data in the block without performing
any further operations to the block. A B TYPE value of 10 can
indicate that the block has been encoded using dynamic Huft-
man encoding. A B TYPE value of 01 can indicate that the
block has been encoded using static Huffman encoding. A B
TYPE value of 11 can indicate that the block of the file that
includes the block has been corrupted.

LEN 206 indicates a length of the block, which may be
referred to as block size. The length of the block can be any
size. In embodiments, the block size is between one and
sixteen bits. NLEN 208 is an inverse of the length LEN 206.
NLEN 208 can be used to check the LEN 206. In embodi-
ments, the LEN and NLEN fields are provided in the header
for uncompressed blocks.

FIGS. 2B-2C illustrate example header data 240 for a static
compressed data stream (FIG. 2B) and a dynamic compressed
data stream (FIG. 2C). Components of a data processing
system (e.g., decompression system 100 of FIG. 1) may use
the header data 240, 260 when processing the data block.
When a source file is compressed, it may be compressed in
blocks (e.g., block by block). In embodiments, each block has
maximum length of 64000. Every block has its own set of
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tables and each block has a symbol that corresponds to the
respective block. When decoding a compressed block, lookup
tables are generated for each block using the header data 240,
260. The header data 240 for a data block in a static com-
pressed data stream may include B FINAL 202 and B TYPE
204. A static compressed payload 212 may also be associated
with the header data 240. In embodiments, the header data
240 is stored along with the compressed payload 212 in a
CAM.

The header data 260 for a data block in a in a dynamic
compressed data stream may include B FINAL 202, BTYPE
204, HCLEN 214, HLIT 216, HDIST 218. A dynamic com-
pressed payload 220 may also be associated with the header
data 260. In some embodiments, the header data 260 is used
along with at least a portion of the dynamic compressed
payload 220 to compute Huffman codes, which may be stored
in a CAM. For example, an AL U may read the HCLEN 214,
add four, read HCLEN+4 code-lengths from payload 226 and
compute HCLEN+4 Huftfman codes that may then be stored
in the CAM. Similarly, the ALU may compute HLIT+257
literal and length Huffman codes and HDIST+1 distance
Huffman codes and store them in a CAM.

For blocks that are compressed using static or dynamic
coding, the header may include an end-of-block (EOB) code
222 which may be used to indicate where the current block
ends.

FIG. 3 illustrates a block diagram of a decompression
pipeline 300 in accordance with embodiments. The decom-
pression pipeline 300 can use any algorithm, such as
DEFLATE. DEFLATE uses a data compression algorithm
(e.g., LZ77) along with the canonical Huffman prefix coding
scheme to generate literals and length+distance pairs using
references from a history buffer 318 (e.g., buffer 124 of FIG.
1). The history buffer 318 can be any size. The decompression
pipeline 300 may be performed by the decompression system
100 of FIG. 1.

Inembodiments, the history bufferis 32 KB. The literal and
length codes are placed together in a 288 entry LLCAM 314
while the distance codes are stored in a 32 entry DCAM 316.
The literal symbols and the length and distance symbols may
be encoded to achieve further compression. Information to
decode the symbols are stored ina 19 entry CLCAM 312. For
every block of incoming compressed stream, the three CAMs
(CLCAM 312, LLCAM 314, DCAM 316) are populated
following which literals or length+distance pairs are decoded
and the original bit-stream is recreated.

The decompression pipeline 300 begins when the decom-
pression system receives an encoded data stream 302. The
decompression system reads a header associated with the
encoded data stream 302 (e.g., the header of FIG. 2). Upon
reading the header, the decompression system performs code
length Huffman decode 304 using the HCLEN from the
header and adding 4 (HCLEN+4). The HCLEN+4 code
lengths are placed in the CLCAM 312. In this example, the
CLCAM may store 19 entries with up to a 5 bit code length
and matches between 1-8 bits. The decompression system
populates the LLCAM 314 and DCAM 316 in a similar
manner. For the LLCAM 314, when performing the literal/
length decode 306, the decompression system obtains the
HLIT from the header and adds 257. The decompression
system computes the codes for HLIT+257 literal and length
combinations and places them in the LLCAM 314. The
LLCAM may store 288 entries with up to an 8 bit literal and
up to a 6 bit length, a 1-15 bit match and a 1 bit type. For the
DCAM 316, the decompression system performs distance
decode 308 by reading the header, obtaining the HDIST,
adding one, computing the codes for the distances, and stor-
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ing the distances in the DCAM 316. The DCAM 316 may
have 32 entries with up to a 9 bit distance and 1-15 bit match.

The decompression pipeline 300 also includes decompress
310, where the decompression system reads a payload and
performs a lookup operation to find a match in the LLCAM
314. If the match is a literal in the LLCAM 314, the decom-
pression system shifts the payload by a number of bits con-
sumed. The decompression system again performs a lookup
operation to find a match in the LLCAM 314. When the match
in the LLCAM 314 is a length, the decompression system
shifts the payload by the number of bits consumed and then
tries to find a match in the DCAM 316. Next, the decompres-
sion system accesses the LLCAM 314 to find the next match.
The decompression system continues to perform lookup
operations to find matches until the decompression system
finds a match for an end-of-block (“EOB”) code in LLCAM
314. In some embodiments, the number of bits consumed in
each match is the match-length in addition to a number of
extra-bits that the decompression system may pick from the
payload that are needed to create the lengths and distances.
The literals and length/distance pairs that the decompression
system generates are stored in the buffer 318 and are subse-
quently sent to the core 120 of FIG. 1 to recreate the original,
uncompressed data stream.

FIG. 4 illustrates an example hybrid CAM architecture 400
in accordance with some embodiments. Before symbols in
the compressed data stream are decoded, the compressed data
stream is parsed (such as by the DEFLATE accelerator 102 of
FIG. 1). As illustrated, the hybrid CAM includes 288 rows.
The symbols from the bit stream can be stored in the rows in
the hybrid CAM. Each symbol can be stored in a different
row. Bach row may have multiple cells that each can store a
value. BCAM cells may store a 1 or a 0 and TCAM cells may
store a 1, a 0 or a “don’t care.”

The symbols can be stored in the CAM in an order of their
code length, such as when the symbols are Huffman encoded.
The canonical nature of the Huffman coding permits a fixed
number of codes of any particular length. In Huffman coding,
(n-1) symbols are possible for a given length that is log,n. In
other words, in Huffman coding there is one 1 bit code, three
1-2 bit codes, seven 1-3 bitcodes, and so on. The hybrid CAM
can be configured to benefit from Huffman coding by storing
each symbol in an order of their code length (e.g., in an
increasing order of code length). When the symbols in the
hybrid CAM are looked up for a possible match, the first row
can be configured to handle a maximum number of possible
matches because symbols of any length will be a match. The
next row can handle fewer possible matches. As the lookup
operation progresses down the rows, there can be fewer pos-
sible matches. For example, the CAM may be configured to
have 288 rows, where each row corresponds to a symbol that
can bebetween 1-15bits long. Instead of using a conventional
TCAM that stores each bit in a TCAM cell, each row can
include different types of cells. As shown each row can
include at least one BCAM cell and at least one TCAM cell.
The first row can be configured to have one BCAM cell and
the rest of the cells are TCAM cells. This configuration may
handle the most possible cases because the “don’t care” in the
TCAM cells will match with any symbol. Because the TCAM
cells are larger in physical area than BCAM cells, this row is
the largest in physical size because it has the most TCAM
cells. The next row has more BCAM cells and fewer TCAM
cells, which means there are fewer “don’t cares” and the
physical size is smaller than the first row. As illustrated, only
a 1 bit symbol can occupy the row 1, only 2 bit symbols can
occupy rows 1-3. Thus, lower rows can have more BCAM
cells and fewer TCAM cells, which means lower rows can
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have a smaller physical area. Table 1 below illustrates an
example hybrid CAM configuration. The example HCAM
can include 2156 B cells and 2164 T cells. Table 2 below
example area savings when using the example Hybrid CAM
configuration set forth in Table 1, as compared to a full TCAM
in a scenario where the width of a bank of cells is determined
by its longest row.

TABLE 1

Example Hybrid CAM Configuration

Row Type Number of Rows Bank
1B8T 1 1
2B7T 2 1
3B6T 4 1
4B5T 8 1
5BAT 16 1
6B3T 32 1
7B2T 64 2
8BIT 128 3,4

9B 33 4
TABLE 2

Example area savings for hybrid CAM

Bank Area Saving
1 3.7%
2 25.7%
3 29.3%
4 29.3%

In embodiments, the hybrid CAM may be partitioned
where one partition may include multiple cell types and
another partition may include one cell type. Partitioning the
hybrid CAM may be beneficial because not all symbols are
accessed with equal probabilities during decoding. In other
words, smaller symbols (i.e., symbols with shorter lengths)
may be accessed more frequently than larger symbols (i.e.,
symbols with longer lengths). Conventionally, a CAM may
be configured for up to 15 bit possible matches. On average
95% of lookup operations for a 15 bit CAM 108 result in a
matchthatis 1 bit to 9 bits. Thus, partitioning the hybrid CAM
into a 9 bit array and a separate 6 bit array, and searching the
9 bit array first, may improve lookup latency 95% of the time.
In some embodiments, either the 9 bit array, the 6 bit array or
both, may be a NAND based circuit implementation that may
not be suitable for matching long symbols. An example
NAND BCAM cell is further described in conjunction with
FIG. 7.

FIG. 5A illustrates an example CAM and register file archi-
tecture 500 that permits simultaneous symbol lookup and
content fetch, in accordance with embodiments. The archi-
tecture 500 may include a CAM with at least two partitions, as
described herein. As illustrated, the CAM includes a 6 bit
CAM 502 and a 9 bit CAM 504, which may function together
to handle 15 bit codes. To enable single cycle symbol decode,
a register file (RF) 506 may be integrated into the CAM for
simultaneous content fetching and symbol matching.
Because the register file is integrated in the CAM, data can be
served directly from the CAM instead of from another loca-
tion (e.g., a RAM) as may be done conventionally. For ease in
explanation, FIG. 5A illustrates an LLCAM, suchas LLCAM
112 of FIG. 1. Any type of CAM is contemplated.

The architecture 500 receives a symbol and then one or
more of the CAMs 502, 504 initiates a lookup to identify a
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match for the symbol, which is represented by search line
520. The lookup operation can identify a literal or a length
code within the CAM. When the search line 520 corresponds
to a match, a match line 522 is provided as a word line to a
corresponding row in the register file 506. In other words, the
lookup operation attempts to match the input symbol with the
CAM along with the literal or length data.

In an example, a 9 bit symbol is provided to the architecture
500. The 9 bit symbol is provided to the 9 bit CAM 504 and
the CAM 504 searches for a match to the 9 bit symbol (520).
When the CAM 504 identifies a match to the symbol (522),
the CAM 504 can also directly access the register file that
contains literal or length data (522). The literal or length data
is output directly from the CAM (524).

In embodiments and as illustrated, the architecture 500
may be divided into four banks 508a-d, where each bank
includes a 6 bit CAM 502 and a 9 bit CAM 504. Each bank
also has its own register file 506. When a CAM includes 288
rows or entries, the 288 rows or entries may be divided among
the four banks 508a-d. Each register file 506a-d can include
different symbols such that the 288 rows are divided among
the four banks. When the architecture 500 receives a symbol,
the symbol can be provided to each bank 508a-d, where it is
searched for a match. In embodiments, one of the four banks
includes a match. When the match is located, literal or length
data that corresponds to the match is provided from the bank
where it was located. The architecture 500 also includes a
search line (SL) driver 510, bit line (BL) merge logic 512 and
a shifter 514, which each may be centrally positioned
between the four banks 508. The central position of these
components may reduce interconnect delay, among provid-
ing other benefits.

FIG. 5B illustrates a timing diagram 550 for simultaneous
symbol lookup and content fetch, in accordance with embodi-
ments. As shown in FIG. 5B, during a positive phase of a
clock cycle “clk” 552, all register file word-lines “WL” 558
are held low. The WL 558 can correspond to 522 of FIG. 5A.
This allows the bit-lines 560 to precharge. The bit lines 562
can correspond to 524 of FIG. SA. Simultaneously, a symbol
is provided to the CAM search lines “SL” 554 (which may
correspond to 520 of FIG. 5A) and match lines “ML” 556
(which may correspond to 522 of FIG. 5A) are toggled. Dur-
ing a negative phase of “clk” 552, the match lines 522 are
coupled to the word-lines 558. In the event of a successful
match, only one word-line 558 is raised high and the corre-
sponding content is read out of the CAM.

FIG. 5C illustrates an example entry 580 in a register file
that is integrated in a CAM in accordance with embodiments.
The register file entry 580 can include a 1 bit “Type” field 582
that indicates if the corresponding symbol is a literal or a
length. The next field 584, which may be 8 bits, may be used
to indicate the literal (8 bits) or a base (3 bits) and extra bits (3
bits) for a length. For a length code in field 584, the unused 2
bits may be used when the length is 258. As opposed to
conventional approaches that may store the code length, the
sum of extra bits and code length is stored in the next bit-field
586. This information may be directly fed into a shifter as the
shift amount to fetch the next symbol. Field 586 removes a 4
bit adder and corresponding delay that is typically used in
conventional systems, thereby improving overall perfor-
mance. The last field 588 in the RF entry 580 may be a single
bit that may be set for rows that are populated with codes
longer than 9 bits. Information in field 588 may be used to
replay a symbol by searching the non-critical (6 bit) portion of
a CAM in the event of an unsuccessful critical (9 bit) match.

FIG. 6 illustrates a decoder 600 for simultaneous address
and code generation in accordance with embodiments. The
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decoder 600 may be an example embodiment of 304, 306, 308
of FIG. 3. In some embodiments, the decoder may be used for
306 and 308, where code-lengths are 1-15 bits long. The
decoder 600 receives a compressed stream 602 (such as the
compressed stream 116 of FIG. 1). The decoder 600 identifies
header information associated with the compressed stream
602, such as headers 200, 240 or 260 of FIG. 2A, 2B, or 2C,
respectively. When processing the compressed stream 602 in
blocks, the decoder 600 may receive a header for each block.
The decoder 600 may compute various information from the
header, which may be stored in a CAM, such as CAM 108 of
FIG. 1, for decompression. The decoder 600 may use an ALU
to processes at least a portion of data included in the header.
In embodiments, the decoder 600 is a Huffman decoder.

The decoder 600 parses compressed header information
and populates a CAM (e.g., a 288 entry literal/length
LLCAM) for subsequent symbol decompression. The
decoder 600 includes an address generation unit 610 and a
code generation unit 620 to enable CAM population in order
of increasing code lengths to improve search performance.

The decoder 600 may operate in various modes. One of the
modes is a parsing mode. When in parsing mode, the decoder
600 may use incoming code-lengths to generate thermometer
code and one-hot code to selectively increment a bank of
address counters 614 and a bank of LL counters 624. In
embodiments, the address generation unit 610 may simulta-
neously increment address counters 614 corresponding to
lengths smaller than the input code-length. In embodiments,
the code generation unit 620 may increment one LI counter
624 (e.g., “Count1” or “Count2” . . . or “Count15”) in a given
cycle.

In an example, the decoder 600 may receive a 10 bit code.
Without receiving all of the codes in the stream and/or block,
the decoder 600 may not be able to put the 10 bit code in an
order with respect to the other codes. The decoder 600 gen-
erates an initial count for the 10 bit code and continues to
identify additional codes. As the decoder 600 receives addi-
tional codes, the decoder 600 can identify how many codes
have been received for each possible code length. To adjust
the order of the codes, the decoder can increment the counters
in accordance with “thermometer code.” For example, when
the first code has 6 bits, the thermometer code is 0000 0000
0011 1111. The decoder 600 increments the address counters
614 from one to six (e.g., Addrl, Addr2 . . . Addr6), since the
first code was 6 bits in length. The one-hot code for the 6 bit
first code is 0000 0000 0010 0000 so count6 of the LL
counters 624 increments. When a second code has 3 bits, then
the address counters 614 from one to three (e.g., Addrl,
Addr2, Addr3) are incremented and count3 of the LL counters
624 is incremented. When a third code has 7 bits, then the
address counters 614 from one to seven and count7 of the LL
counters 624 are incremented. In this manner, the codes can
be arranged in an order (e.g., increasing, decreasing) accord-
ing to their length.

When in initialization mode, decoder 600 may selectively
shift and accumulate the LL counters to generate the starting
code words. The decoder 600 may do this serially from
“Countl” to “Count15,” where each counter takes one cycle
to update.

In decoding mode, the decoder 600 may again parse the
header of the compressed stream to generate symbols and
corresponding addresses and counter banks are selectively
incremented. In decoding mode, the decoder 600 increments
the address counters 624 in accordance with “one-hot code”
instead of “thermometer code.” In some embodiments, only
one LI counter and address counter may increment each
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cycle. The decoder 600 can populate any CAM in this man-
ner, such as any of the LLCAM, the CLCAM and DCAM of
FIG. 1.

FIG. 7 illustrates a circuit diagram of a 12 transistor static
NAND type binary CAM cell 700 in accordance with
embodiments. The CAM cell 700 is populated with write data
“wrd” 702 by raising the write wordline “wrwl” 704. During
a search or lookup operation, if the search bit matches the cell
content, node m1 710 is raised high. The two transistors from
a neighboring cell with node m2 720 are connected as shown
to accomplish a local NAND merge. The local match nodes
are merged again as shown in FIG. 8.

FIG. 8 illustrates match merging circuit 800 in accordance
with some embodiments. During a positive phase of clk, 802
(such as is described in conjunction with FIG. 5) the match
lines for all rows are pulled low. During a negative phase of
clk in the event of a match 804, the output is raised high. A
symbol is first decoded in the 9 bit match mode by setting
mask_b 806 low. In the event of an unsuccessful match,
mask_b 806 is raised high and the same symbol is matched
again. The clk 802 period is doubled to accommodate the
additional logic delay needed for the 15 bit match. An unsuc-
cessful match is defined as an event when no row in a CAM
matches the 9 bit symbol or when the matched row (or rows)
corresponds to a code length that is larger than 9.

FIG. 9 illustrates a diagrammatic representation of a
machine in the example form of a computing system 900
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver oraclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a game console, a cellular telephone, a digital camera, a
handheld PC, a web appliance, a server, a network router,
switch or bridge, micro controller, a digital signal processor
(DSP), system on a chip, network computers (NetPC), net-
work hubs, wide area network (WAN) switches, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple
sets) of instructions to perform any one or more of the meth-
odologies discussed herein. Embodiments are not limited to
computer systems.

The computing system 900 includes a processing device
902, main memory 904 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 906 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 916, which communicate with each other via a bus
908.

Processing device 902 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 902 may also be one or more special-
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purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. In one embodiment, processing device 902 may
include one or processing cores. The processing device 902 is
configured to execute the processing logic 926 for performing
the operations discussed herein. In one embodiment, process-
ing device 902 can be part of the system 100 of FIG. 1.
Alternatively, the computing system 900 can include other
components as described herein. It should be understood that
the core may support multithreading (executing two or more
parallel sets of operations or threads), and may do so in a
variety of ways including time sliced multithreading, simul-
taneous multithreading (where a single physical core pro-
vides a logical core for each of the threads that physical core
is simultaneously multithreading), or a combination thereof
(e.g., time sliced fetching and decoding and simultaneous
multithreading thereafter such as in the Intel® Hyperthread-
ing technology).

Computing system 900 is representative of processing sys-
tems based on the PENTIUM III™, PENTIUM 4™, Cel-
eron™, Xeon™, Itanium, XScale™, StrongARM™, Core™,
Core 2™ Atom™, and/or Intel® Architecture Core™, such
as an i3, i5, 17 microprocessors available from Intel Corpora-
tion of Santa Clara, Calif., although other systems (including
PCshaving other microprocessors, engineering workstations,
set-top boxes and the like) may also be used. However, under-
stand that other low power processors such as available from
Advanced Micro Devices, Inc. (AMD) of Sunnyvale, Calif., a
MIPS-based design from MIPS Technologies, Inc. of Sunny-
vale, Calif., an ARM-based design licensed from ARM Hold-
ings, Ltd. or customer thereof, or their licensees or adopters
may instead be present in other embodiments such as an
Apple A5/A6 processor, a Qualcomm Snapdragon processor,
or TI OMAP processor. In one embodiment, processing
device 101 executes a version of the WINDOWS™ operating
system available from Microsoft Corporation of Redmond,
Wash., although other operating systems (OS X, UNIX,
Linux, Android, 10S, Symbian, for example), embedded soft-
ware, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present disclosure are not limited
to any specific combination of hardware circuitry and soft-
ware. One embodiment may be described in the context of a
single processor desktop or server system, but alternative
embodiments may be included in a multiprocessor system.
Computing system 900 may be an example of a “hub’ system
architecture.

The computing system 900 may further include a network
interface device 922 communicably coupled to a network
918. The computing system 900 also may include a display
device 910 (e.g., a liquid crystal display (LCD) or a cathode
ray tube (CRT)), an alphanumeric input device 912 (e.g., a
keyboard), a cursor control device 914 (e.g., a mouse), a
signal generation device 920 (e.g., a speaker), or other periph-
eral devices. Furthermore, computing system 900 may
include a graphics processing unit (not illustrated), a video
processing unit (not illustrated) and an audio processing unit
(not illustrated). In another embodiment, the computing sys-
tem 900 may include a chipset (not illustrated), which refers
to a group of integrated circuits, or chips, that are designed to
work with the processing device 902 and controls communi-
cations between the processing device 902 and external
devices. For example, the chipset may be a set of chips on a
motherboard that links the processing device 902 to very
high-speed devices, such as main memory 904 and graphic
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controllers, as well as linking the processing device 902 to
lower-speed peripheral buses of peripherals, such as USB,
PCI or ISA buses.

The data storage device 916 may include a computer-read-
able storage medium 924 on which is stored instructions 926
embodying any one or more of the methodologies of func-
tions described herein. The instructions 926 may also reside,
completely or at least partially, within the main memory 904
asinstructions 926 and/or within the processing device 902 as
processing logic 926 during execution thereof by the comput-
ing system 900; the main memory 904 and the processing
device 902 also constituting computer-readable storage
media.

The computer-readable storage medium 924 may also be
used to store instructions 926 utilizing the processing device
902, such as described with respect to FIG. 1, and/or a soft-
ware library containing methods that call the above applica-
tions. While the computer-readable storage medium 924 is
shown in an example embodiment to be a single medium, the
term “computer-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“computer-readable storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instruction for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the present embodiments. The term “com-
puter-readable storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, and opti-
cal and magnetic media.

Embodiments may be implemented in many different sys-
tem types. Referring now to FIG. 10, shown is a block dia-
gram of a multiprocessor system 1000 in accordance with an
embodiment. As shown in FIG. 10, multiprocessor system
1000 is a point-to-point interconnect system, and includes a
first processor 1070 and a second processor 1080 coupled via
a point-to-point interconnect 1050. As shown in FIG. 10, each
of processors 1070 and 1080 may be multicore processors,
including first and second processor cores (i.e., processor
cores 1074a and 1074H and processor cores 1084a and
1084b), although potentially many more cores may be present
in the processors. The processors each may include hybrid
write mode logics in accordance with an embodiment of the
present.

While shown with two processors 1070, 1080, it is to be
understood that the scope of the present disclosure is not so
limited. In other embodiments, one or more additional pro-
cessors may be present in a given processor.

Processors 1070 and 1080 are shown including integrated
memory controller units 8102 and 8102, respectively. Proces-
sor 1070 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1076 and 1078; similarly, sec-
ond processor 1080 includes P-P interfaces 1086 and 1088.
Processors 1070, 1080 may exchange information via a point-
to-point (P-P) interface 1050 using P-P interface circuits
1078, 1088. As shown in FIG. 10, IMCs 1072 and 1082
couple the processors to respective memories, namely a
memory 1032 and a memory 1034, which may be portions of
main memory locally attached to the respective processors.

Processors 1070, 1080 may each exchange information
with a chipset 1090 via individual P-P interfaces 1052, 1054
using point to point interface circuits 1076, 1094, 1086, 1098.
Chipset 1090 may also exchange information with a high-
performance graphics circuit 1038 via a high-performance
graphics interface 1039.
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A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1090 may be coupled to a first bus 1016 via an
interface 1096. In one embodiment, first bus 1016 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present disclosure is
not so limited.

As shown in FIG. 10, various /O devices 1014 may be
coupled to first bus 1016, along with a bus bridge 1018 which
couples first bus 1016 to a second bus 1020. In one embodi-
ment, second bus 1020 may be a low pin count (LPC) bus.
Various devices may be coupled to second bus 1020 includ-
ing, for example, a keyboard and/or mouse 1022, communi-
cation devices 1027 and a storage unit 1028 such as a disk
drive or other mass storage device which may include instruc-
tions/code and data 1030, in one embodiment. Further, an
audio I/O 1024 may be coupled to second bus 1020. Note that
other architectures are possible. For example, instead of the
point-to-point architecture of FIG. 10, a system may imple-
ment a multi-drop bus or other such architecture.

Turning next to FIG. 11, an embodiment of a system on-
chip (SOC) design in accordance with embodiments of the
disclosure is depicted. As an illustrative example, SOC 1100
is included in user equipment (UE). In one embodiment, UE
refers to any device to be used by an end-user to communi-
cate, such as ahand-held phone, smartphone, tablet, ultra-thin
notebook, notebook with broadband adapter, or any other
similar communication device. A UE may connect to a base
station or node, which can correspond in nature to a mobile
station (MS) in a GSM network.

Here, SOC 1100 includes 2 cores—1106 and 1107. Similar
to the discussion above, cores 1106 and 1107 may conform to
an Instruction Set Architecture, such as a processor having the
Intel® Architecture Core™, an Advanced Micro Devices,
Inc. (AMD) processor, a MIPS-based processor, an ARM-
based processor design, or a customer thereof, as well as their
licensees or adopters. Cores 1106 and 1107 are coupled to
cache control 1108 that is associated with bus interface unit
1109 and .2 cache 1110 to communicate with other parts of
system 1100. Interconnect 1111 includes an on-chip inter-
connect, such as an IOSF, AMBA, or other interconnects
discussed above, which can implement one or more aspects of
the described disclosure.

Interconnect 1111 provides communication channels to
the other components, such as a Subscriber Identity Module
(SIM) 1130 to interface with a SIM card, a boot rom 1135 to
hold boot code for execution by cores 1106 and 1107 to
initialize and boot SOC 1100, a SDRAM controller 1140 to
interface with external memory (e.g. DRAM 1160), a flash
controller 1145 to interface with persistent or non-volatile
memory (e.g. Flash 1165), a peripheral control 1150 (e.g.
Serial Peripheral Interface) to interface with peripherals,
video codecs 1120 and Video interface 1125 to display and
receive input (e.g. touch enabled input), GPU 1115 to perform
graphics related computations, etc. Any of these interfaces
may incorporate aspects of the embodiments described
herein.

In addition, the system illustrates peripherals for commu-
nication, such as a Bluetooth module 1170, modem 1175
(e.g., 3G, 4G, Long Term Evolution (LTE), LTE-Advanced,
etc.), GPS 1180, Wi-Fi 1185, Zigbee (not shown), and
Z-Wave (not shown). Note as stated above, a UE includes a
radio for communication. As a result, these peripheral com-
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munication modules may not all be included. However, in a
UE some form of a radio for external communication should
be included.

FIG. 12 is a block diagram of the micro-architecture for a
processor 1200 that includes logic circuits to perform instruc-
tions in accordance with one embodiment of the present dis-
closure. In some embodiments, an instruction in accordance
with one embodiment can be implemented to operate on data
elements having sizes of byte, word, doubleword, quadword,
etc., as well as datatypes, such as single and double precision
integer and floating point datatypes. In one embodiment the
in-order front end 1201 is the part of the processor 1200 that
fetches instructions to be executed and prepares them to be
used later in the processor pipeline. The front end 1201 may
include several units. In one embodiment, the instruction
prefetcher 1226 fetches instructions from memory and feeds
them to an instruction decoder 1228 which in turn decodes or
interprets them. For example, in one embodiment, the
decoder decodes a received instruction into one or more
operations called “micro-instructions” or “micro-operations”
(also called micro op or uops) that the machine can execute. In
other embodiments, the decoder parses the instruction into an
opcode and corresponding data and control fields that are
used by the micro-architecture to perform operations in
accordance with one embodiment. In one embodiment, the
trace cache 1230 takes decoded uops and assembles them into
program ordered sequences or traces in the uop queue 1234
for execution. When the trace cache 1230 encounters a com-
plex instruction, the microcode ROM 1232 provides the uops
needed to complete the operation.

Some instructions are converted into a single micro-op,
whereas others need several micro-ops to complete the full
operation. In one embodiment, if more than four micro-ops
are needed to complete an instruction, the decoder 1228
accesses the microcode ROM 1232 to do the instruction. For
one embodiment, an instruction can be decoded into a small
number of micro ops for processing at the instruction decoder
1228. In another embodiment, an instruction can be stored
within the microcode ROM 1232 should a number of micro-
ops be needed to accomplish the operation. The trace cache
1230 refers to an entry point programmable logic array (PLA)
to determine a correct micro-instruction pointer for reading
the micro-code sequences to complete one or more instruc-
tions in accordance with one embodiment from the micro-
code ROM 1232. After the microcode ROM 1232 finishes
sequencing micro-ops for an instruction, the frontend 1201 of
the machine resumes fetching micro-ops from the trace cache
1230.

The out-of-order execution engine 1203 is where the
instructions are prepared for execution. The out-of-order
execution logic has a number of buffers to smooth out and
re-order the flow of instructions to optimize performance as
they go down the pipeline and get scheduled for execution.
The allocator logic allocates the machine buffers and
resources that each uop needs in order to execute. The register
renaming logic renames logic registers onto entries in a reg-
ister file. The allocator also allocates an entry for each uop in
one of the two uop queues, one for memory operations and
one for non-memory operations, in front of the instruction
schedulers: memory scheduler, fast scheduler 1202, slow/
general floating point scheduler 1204, and simple floating
point scheduler 1206. The uop schedulers 1202, 1204, 1206
determine when a vop is ready to execute based on the readi-
ness of their dependent input register operand sources and the
availability of the execution resources the uops need to com-
plete their operation. The fast scheduler 1202 of one embodi-
ment can schedule on each half of the main clock cycle while
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the other schedulers can schedule once per main processor
clock cycle. The schedulers arbitrate for the dispatch ports to
schedule uops for execution.

Register files 1208, 1210 sit between the schedulers 1202,
1204, 1206, and the execution units 1212, 1214, 1216, 1218,
1220, 1222, 1224 in the execution block 1211. There is a
separate register file 1208, 1210 for integer and floating point
operations, respectively. Each register file 1208, 1210, of one
embodiment also includes a bypass network that can bypass
or forward just completed results that have not yet been writ-
ten into the register file to new dependent uops. The integer
register file 1208 and the floating point register file 1210 are
also capable of communicating data with the other. For one
embodiment, the integer register file 1208 is split into two
separate register files, one register file for the low order 32 bits
of data and a second register file for the high order 32 bits of
data. The floating point register file 1210 of one embodiment
has 128 bit wide entries because floating point instructions
typically have operands from 64 to 128 bits in width.

The execution block 1211 contains the execution units
1212,1214,1216,1218, 1220, 1222, 1224, where the instruc-
tions are actually executed. This section includes the register
files 1208, 1210, that store the integer and floating point data
operand values that the micro-instructions need to execute.
The processor 1200 of one embodiment is comprised of a
number of execution units: address generation unit (AGU)
1212, AGU 1214, fast ALU 1216, fast ALU 1218, slow ALU
1220, floating point ALU 1222, floating point move unit
1224. For one embodiment, the floating point execution
blocks 1222, 1224, execute floating point, MMX, SIMD, and
SSE, or other operations. The floating point ALU 1222 of one
embodiment includes a 64 bit by 64 bit floating point divider
to execute divide, square root, and remainder micro-ops. For
embodiments of the present disclosure, instructions involving
a floating point value may be handled with the floating point
hardware. In one embodiment, the ALLU operations go to the
high-speed ALU execution units 1216, 1218. The fast AL.Us
1216, 1218, of one embodiment can execute fast operations
with an effective latency of half a clock cycle. For one
embodiment, most complex integer operations go to the slow
ALU 1220 as the slow ALU 1220 includes integer execution
hardware for long latency type of operations, such as a mul-
tiplier, shifts, flag logic, and branch processing. Memory
load/store operations are executed by the AGUs 1212, 1214.
For one embodiment, the integer AL.Us 1216, 1218, 1220 are
described in the context of performing integer operations on
64 bit data operands. In alternative embodiments, the AL Us
1216, 1218, 1220 can be implemented to support a variety of
databits including 16,32, 128, 756, etc. Similarly, the floating
point units 1222, 1224 can be implemented to support a range
of operands having bits of various widths. For one embodi-
ment, the floating point units 1222, 1224 can operate on 128
bits wide packed data operands in conjunction with SIMD
and multimedia instructions.

In one embodiment, the uops schedulers 1202, 1204, 1206
dispatch dependent operations before the parent load has
finished executing. As uops are speculatively scheduled and
executed in processor 1200, the processor 1200 also includes
logic to handle memory misses. If a data load misses in the
data cache, there can be dependent operations in flight in the
pipeline that have left the scheduler with temporarily incor-
rect data. A replay mechanism tracks and re-executes instruc-
tions that use incorrect data. The dependent operations should
be replayed and the independent ones are allowed to com-
plete. The schedulers and replay mechanism of one embodi-
ment of a processor are also designed to catch instruction
sequences for text string comparison operations.
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The term “registers” may refer to the on-board processor
storage locations that are used as part of instructions to iden-
tify operands. In other words, registers may be those that are
usable from the outside of the processor (from a program-
mer’s perspective). However, the registers of an embodiment
should not be limited in meaning to a particular type of
circuit. Rather, a register of an embodiment is capable of
storing and providing data, and performing the functions
described herein. The registers described herein can be imple-
mented by circuitry within a processor using any number of
different techniques, such as dedicated physical registers,
dynamically allocated physical registers using register
renaming, combinations of dedicated and dynamically allo-
cated physical registers, etc. In one embodiment, integer reg-
isters store thirty-two bit integer data. A register file of one
embodiment also contains eight multimedia SIMD registers
for packed data. For the discussions below, the registers are
understood to be data registers designed to hold packed data,
such as 64 bits wide MMX registers (also referred to as ‘mm’
registers in some instances) in microprocessors enabled with
the MMX™ technology from Intel Corporation of Santa
Clara, Calif. These MMX registers, available in both integer
and floating point forms, can operate with packed data ele-
ments that accompany SIMD and SSE instructions. Similarly,
128 bits wide XMM registers relating to SSE2, SSE3, SSE4,
or beyond (referred to generically as “SSEx”) technology can
also be used to hold such packed data operands. In one
embodiment, in storing packed data and integer data, the
registers do not need to differentiate between the two data
types. In one embodiment, integer and floating point are
either contained in the same register file or different register
files. Furthermore, in one embodiment, floating point and
integer data may be stored in different registers or the same
registers.

FIG. 13 is a block diagram of a single core processor and a
multicore processor 1300 with integrated memory controller
and graphics according to embodiments of the disclosure.
The solid lined boxes in FIG. 13 illustrate a processor 1300
with a single core 1302A, a system agent 1310, a set of one or
more bus controller units 1316, while the addition of the
dashed lined boxes illustrates an alternative processor 1300
with multiple cores 1302A-N, a set of one or more integrated
memory controllerunit(s) 1314 in the system agent unit 1310,
and an integrated graphics logic 1308.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1306, and external memory (not shown) coupled to the set of
integrated memory controller units 1314. The set of shared
cache units 1306 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1312 interconnects the integrated graphics logic 1308,
the set of shared cache units 1306, and the system agent unit
1310, alternative embodiments may use any number of well-
known techniques for interconnecting such units.

In some embodiments, one or more of the cores 1302A-N
are capable of multithreading.

The system agent 1310 includes those components coor-
dinating and operating cores 1302A-N. The system agent unit
1310 may include for example a power control unit (PCU)
and a display unit. The PCU may be or include logic and
components needed for regulating the power state of the cores
1302A-N and the integrated graphics logic 1308. The display
unit is for driving one or more externally connected displays.

The cores 1302 A-N may be homogenous or heterogeneous
in terms of architecture and/or instruction set. For example,
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some of the cores 1302A-N may be in order while others are
out-of-order. As another example, two or more of the cores
1302A-N may be capable of execution the same instruction
set, while others may be capable of executing a subset of that
instruction set or a different instruction set. As a further
example, the cores can be different architecture.

The processor may include one or more different general-
purpose processors, such as a Core™ i3, 15, 17, 2 Duo and
Quad, Xeon™, Itanium™, Atom™, XScale™ or Stron-
gARM™ processor, which are available from Intel Corpora-
tion, of Santa Clara, Calif. For example, one core can be a
Core 17™ core while another core of the processor can be an
Atom™ core. Alternatively, the processor may be from
another company, such as ARM Holdings, [td, MIPS, etc.
The processor may be a special-purpose processor, such as,
for example, a network or communication processor, com-
pression engine, graphics processor, co-processor, embedded
processor, or the like. The processor may be implemented on
one or more chips. The processor 800 may be a part of and/or
may be implemented on one or more substrates using any of
anumber of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

FIG. 14 illustrates a diagrammatic representation of a
machine in the example form of a computing system 1400
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a game console, a cellular telephone, a digital camera, a
handheld PC, a web appliance, a server, a network router,
switch or bridge, micro controller, a digital signal processor
(DSP), system on a chip, network computers (NetPC), net-
work hubs, wide area network (WAN) switches, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specitfy actions to be taken by that machine.
Further, while only a single machine is illustrated for the
processing device 100, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.
Embodiments are not limited to computer systems.

The computing system 1400 includes a processing device
1402, main memory 1404 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 1406 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 1416, which communicate with each other via a
bus 1408.

Processing device 1402 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 1402 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
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or the like. In one embodiment, processing device 1402 may
include one or processing cores. The processing device 1402
is configured to execute the processing logic 1426 for per-
forming the operations discussed herein. In one embodiment,
processing device 1402 can be part of the system 100 of FIG.
1. Alternatively, the computing system 1400 can include other
components as described herein. It should be understood that
the core may support multithreading (executing two or more
parallel sets of operations or threads), and may do so in a
variety of ways including time sliced multithreading, simul-
taneous multithreading (where a single physical core pro-
vides a logical core for each of the threads that physical core
is simultaneously multithreading), or a combination thereof
(e.g., time sliced fetching and decoding and simultaneous
multithreading thereafter such as in the Intel® Hyperthread-
ing technology).

Computing system 1400 is representative of processing
systems based on the PENTIUM III™, PENTIUM 4™, Cel-
eron™, Xeon™, Itanium, XScale™, StrongARM™, Core™,
Core 2™, Atom™, and/or Intel® Architecture Core™, such
as an i3, 15, 17 microprocessors available from Intel Corpora-
tion of Santa Clara, Calif., although other systems (including
PCshaving other microprocessors, engineering workstations,
set-top boxes and the like) may also be used. However, under-
stand that other low power processors such as available from
Advanced Micro Devices, Inc. (AMD) of Sunnyvale, Calif., a
MIPS-based design from MIPS Technologies, Inc. of Sunny-
vale, Calif., an ARM-based design licensed from ARM Hold-
ings, Ltd. or customer thereof, or their licensees or adopters
may instead be present in other embodiments such as an
Apple AS5/A6 processor, a Qualcomm Snapdragon processor,
or TI OMAP processor. In one embodiment, processing
device 101 executes a version of the WINDOWS™ operating
system available from Microsoft Corporation of Redmond,
Wash., although other operating systems (OS X, UNIX,
Linux, Android, i0S, Symbian, for example), embedded soft-
ware, and/or graphical user interfaces, may also be used.
Thus, embodiments of the present disclosure are not limited
to any specific combination of hardware circuitry and soft-
ware. One embodiment may be described in the context of a
single processor desktop or server system, but alternative
embodiments may be included in a multiprocessor system.
Computing system 1400 may be an example ofa ‘hub’ system
architecture.

The computing system 1400 may further include a network
interface device 1422 communicably coupled to a network
1418. The computing system 1400 also may include a display
device 1410 (e.g., a liquid crystal display (LCD) or a cathode
ray tube (CRT)), an alphanumeric input device 1412 (e.g., a
keyboard), a cursor control device 1414 (e.g., a mouse), a
signal generation device 1420 (e.g., a speaker), or other
peripheral devices. Furthermore, computing system 1400
may include a graphics processing unit (not illustrated), a
video processing unit (not illustrated) and an audio process-
ing unit (not illustrated). In another embodiment, the com-
puting system 1400 may include a chipset (not illustrated),
which refers to a group of integrated circuits, or chips, that are
designed to work with the processing device 1402 and con-
trols communications between the processing device 1402
and external devices. For example, the chipset may be a set of
chips on a motherboard that links the processing device 1402
to very high-speed devices, such as main memory 1404 and
graphic controllers, as well as linking the processing device
1402 to lower-speed peripheral buses of peripherals, such as
USB, PCI or ISA buses.

The data storage device 1416 may include a computer-
readable storage medium 1424 on which is stored instructions
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1426 embodying any one or more of the methodologies of
functions described herein. The instructions 1426 may also
reside, completely or at least partially, within the main
memory 1404 as instructions 1426 and/or within the process-
ing device 1402 as processing logic 1426 during execution
thereof by the computing system 1400; the main memory
1404 and the processing device 1402 also constituting com-
puter-readable storage media.

The computer-readable storage medium 1424 may also be
used to store instructions 1426 utilizing the processing device
1402, such as described with respect to FIG. 1, and/or a
software library containing methods that call the above appli-
cations. While the computer-readable storage medium 1424
is shown in an example embodiment to be a single medium,
the term “computer-readable storage medium” should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing, encod-
ing or carrying a set of instruction for execution by the
machine and that cause the machine to perform any one or
more of the methodologies of the present embodiments. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, and optical and magnetic media.

Referring now to FIG. 14, shown is a block diagram of a
SoC 1400 in accordance with an embodiment of the present
disclosure. Similar elements in FIG. 14 bear like reference
numerals. Also, dashed lined boxes are features on more
advanced SoCs. In FIG. 14, an interconnect unit(s) 1402 is
coupled to: an application processor 1410 which includes a
set of one or more cores 1402A-N and shared cache unit(s)
1406; a system agent unit 1410; a bus controller unit(s) 1416;
an integrated memory controller unit(s) 1414; a set or one or
more media processors 1420 which may include integrated
graphics logic 1408, an image processor 1424 for providing
still and/or video camera functionality, an audio processor
1426 for providing hardware audio acceleration, and a video
processor 1428 for providing video encode/decode accelera-
tion; an static random access memory (SRAM) unit 1430; a
direct memory access (DMA) unit 1432; and a display unit
1440 for coupling to one or more external displays.

Turning to FIG. 15, a block diagram of an example com-
puter system formed with a processor that includes execution
units to execute an instruction, where one or more of the
interconnects implement one or more features in accordance
with one embodiment of the present disclosure is illustrated.
System 1500 includes a component, such as a processor 1502
to employ execution units including logic to perform algo-
rithms for processing data, in accordance with the embodi-
ment described herein. Embodiments of the present disclo-
sure are not limited to any specific combination of hardware
circuitry and software.

Embodiments are not limited to computer systems. Alter-
native embodiments of the present disclosure can be used in
other devices such as handheld devices and embedded appli-
cations. Some examples of handheld devices include cellular
phones, Internet Protocol devices, digital cameras, personal
digital assistants (PDAs), and handheld PCs. Embedded
applications can include a micro controller, a digital signal
processor (DSP), system on a chip, network computers
(NetPC), set-top boxes, network hubs, wide area network
(WAN) switches, or any other system that can perform one or
more instructions in accordance with at least one embodi-
ment.
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In this illustrated embodiment, processor 1502 includes
one or more execution units 1508 to implement an algorithm
that is to perform at least one instruction. One embodiment
may be described in the context of a single processor desktop
or server system, but alternative embodiments may be
included in a multiprocessor system. System 1500 is an
example of a “hub’ system architecture. The computer system
1500 includes a processor 1502 to process data signals. The
processor 1502, as one illustrative example, includes a com-
plex instruction set computer (CISC) microprocessor, a
reduced instruction set computing (RISC) microprocessor, a
very long instruction word (VLIW) microprocessor, a pro-
cessor implementing a combination of instruction sets, or any
other processor device, such as a digital signal processor, for
example. The processor 1502 is coupled to a processor bus
1510 that transmits data signals between the processor 1502
and other components in the system 1500. The elements of
system 1500 (e.g. graphics accelerator 1512, memory con-
troller hub 1516, memory 1520, 1/O controller hub 1524,
wireless transceiver 1526, Flash BIOS 1528, Network con-
troller 1534, Audio controller 1536, Serial expansion port
1538, 1/O controller 1530, etc.) perform their conventional
functions that are well known to those familiar with the art.

In one embodiment, the processor 1502 includes a Level 1
(L1) internal cache memory 1504. Depending on the archi-
tecture, the processor 1502 may have a single internal cache
or multiple levels of internal caches. Other embodiments
include a combination of both internal and external caches
depending on the particular embodiment and needs. Register
file 1506 is to store different types of data in various registers
including integer registers, floating point registers, vector
registers, banked registers, shadow registers, checkpoint reg-
isters, status registers, and instruction pointer register.

Execution unit 1508, including logic to perform integer
and floating point operations, also resides in the processor
1502. The processor 1502, in one embodiment, includes a
microcode (ucode) ROM to store microcode, which when
executed, is to perform algorithms for certain macroinstruc-
tions or handle complex scenarios. Here, microcode is poten-
tially updateable to handle logic bugs/fixes for processor
1502. For one embodiment, execution unit 1508 includes
logic to handle a packed instruction set 1509. By including
the packed instruction set 1509 in the instruction set of a
general-purpose processor 1502, along with associated cir-
cuitry to execute the instructions, the operations used by
many multimedia applications may be performed using
packed data in a general-purpose processor 1502. Thus, many
multimedia applications are accelerated and executed more
efficiently by using the full width of a processor’s data bus for
performing operations on packed data. This potentially elimi-
nates the need to transfer smaller units of data across the
processor’s data bus to perform one or more operations, one
data element at a time.

Alternate embodiments of an execution unit 1508 may also
be used in micro controllers, embedded processors, graphics
devices, DSPs, and other types of logic circuits. System 1500
includes a memory 1520. Memory 1520 includes a dynamic
random access memory (DRAM) device, a static random
access memory (SRAM) device, flash memory device, or
other memory device. Memory 1520 also may include any
type of persistent or non-volatile media, such as a flash
memory device, a solid-state device (SSD), a memristor,
phase change memory (e.g., PCS, PCM, PCME, PCRAM,
Ovonic Unified Memory, Chalcogenide RAM, C-RAM,
etc.), or other storage or memory device. The memory 1520
can be byte-addressable. Memory 1520 may also include
volatile memory, such as in the form of random access
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memory (RAM) or registers. Memory 1520 stores instruc-
tions and/or data represented by data signals that are to be
executed by the processor 1502.

A system logic chip 1516 is coupled to the processor bus
1510 and memory 1520. The system logic chip 1516 in the
illustrated embodiment is a memory controller hub (MCH).
The processor 1502 can communicate to the MCH 1516 via a
processor bus 1510. The MCH 1516 provides a high band-
width memory path 1518 to memory 1520 for instruction and
data storage and for storage of graphics commands, data and
textures. The MCH 1516 is to direct data signals between the
processor 1502, memory 1520, and other components in the
system 1500 and to bridge the data signals between processor
bus 1510, memory 1520, and system /O 1522. In some
embodiments, the system logic chip 1516 can provide a
graphics port for coupling to a graphics controller 1512. The
MCH 1516 is coupled to memory 1520 through a memory
interface 1518. The graphics card 1512 is coupled to the MCH
1516 through an Accelerated Graphics Port (AGP) intercon-
nect 1514.

System 1500 can use a proprietary hub interface bus 1522
to couple the MCH 1516 to the I/O controller hub (ICH) 1530.
The ICH 1530 provides direct connections to some [/O
devices via a local 1/O bus. The local I/O bus is a high-speed
1/O bus for connecting peripherals to the memory 1520,
chipset, and processor 1502. Some examples are the audio
controller, firmware hub (flash BIOS) 1528, wireless trans-
ceiver 1526, data storage 1524, legacy 1/O controller 1540
containing user input and keyboard interfaces 1542, a serial
expansion port such as Universal Serial Bus (USB), and a
network controller 1534. The data storage device 1524 can
comprise a hard disk drive, a floppy disk drive, a CD-ROM
device, a flash memory device, or other mass storage device.

For another embodiment of a system, an instruction in
accordance with one embodiment can be used with a system
on a chip. One embodiment of a system on a chip comprises
of a processor and a memory. The memory for one such
system is a flash memory. The flash memory can be located on
the same die as the processor and other system components.
Additionally, other logic blocks such as a memory controller
or graphics controller can also be located on a system on a
chip.

FIG. 16A is a block diagram illustrating an in-order pipe-
line and a register renaming stage, out-of-order issue/execu-
tion pipeline according to at least one embodiment of the
disclosure. FIG. 16B is a block diagram illustrating an in-
order architecture core and a register renaming logic, out-of-
order issue/execution logic to be included in a processor
according to at least one embodiment of the disclosure. The
solid lined boxes in FIG. 16A illustrate the in-order pipeline,
while the dashed lined boxes illustrates the register renaming,
out-of-order issue/execution pipeline. Similarly, the solid
lined boxes in FIG. 16B illustrate the in-order architecture
logic, while the dashed lined boxes illustrates the register
renaming logic and out-of-order issue/execution logic.

In FIG. 16A, a processor pipeline 1600 includes a fetch
stage 1602, a length decode stage 1604, a decode stage 1606,
an allocation stage 1608, a renaming stage 1610, a scheduling
(also known as a dispatch or issue) stage 1612, a register
read/memory read stage 1614, an execute stage 1616, a write
back/memory write stage 1618, an exception handling stage
1622, and a commit stage 1624.

In FIG. 16B, arrows denote a coupling between two or
more units and the direction of the arrow indicates a direction
of data flow between those units. FIG. 16B shows processor
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core 1690 including a front end unit 1630 coupled to an
execution engine unit 1650, and both are coupled to a memory
unit 1670.

The core 1690 may be a reduced instruction set computing
(RISC) core, a complex instruction set computing (CISC)
core, avery long instruction word (VLIW) core, or a hybrid or
alternative core type. As yet another option, the core 1690
may be a special-purpose core, such as, for example, a net-
work or communication core, compression engine, graphics
core, or the like.

The front end unit 1630 includes a branch prediction unit
1632 coupled to an instruction cache unit 1634, which is
coupled to an instruction translation lookaside buffer (TLB)
1636, which is coupled to an instruction fetch unit 1638,
which is coupled to a decode unit 1640. The decode unit or
decoder may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decoder may be
implemented using various different mechanisms. Examples
of suitable mechanisms include, but are not limited to, look-
up tables, hardware implementations, programmable logic
arrays (PLAs), microcode read only memories (ROMs), etc.
The instruction cache unit 1634 is further coupled to a level 2
(L2) cache unit 1676 in the memory unit 1670. The decode
unit 1640 is coupled to a rename/allocator unit 1652 in the
execution engine unit 1650.

The execution engine unit 1650 includes the rename/allo-
cator unit 1652 coupled to a retirement unit 1654 and a set of
one or more scheduler unit(s) 1656. The scheduler unit(s)
1656 represents any number of different schedulers, includ-
ing reservations stations, central instruction window, etc. The
scheduler unit(s) 1656 is coupled to the physical register
file(s) unit(s) 1658. Each of the physical register file(s) units
1658 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. The physical register file(s)
unit(s) 1658 is overlapped by the retirement unit 1654 to
illustrate various ways in which register renaming and out-
of-order execution may be implemented (e.g., using a reorder
buffer(s) and a retirement register file(s), using a future file(s),
a history buffer(s), and a retirement register file(s); using a
register maps and a pool of registers; etc.). Generally, the
architectural registers are visible from the outside of the pro-
cessor or from a programmer’s perspective. The registers are
not limited to any known particular type of circuit. Various
different types of registers are suitable as long as they are
capable of storing and providing data as described herein.
Examples of suitable registers include, but are not limited to,
dedicated physical registers, dynamically allocated physical
registers using register renaming, combinations of dedicated
and dynamically allocated physical registers, etc. The retire-
ment unit 1654 and the physical register file(s) unit(s) 1658
are coupled to the execution cluster(s) 1660. The execution
cluster(s) 1660 includes a set of one or more execution units
1662 and a set of one or more memory access units 1664. The
execution units 1662 may perform various operations (e.g.,
shifts, addition, subtraction, multiplication) and on various
types of data (e.g., scalar floating point, packed integer,
packed floating point, vector integer, vector floating point).
While some embodiments may include a number of execution
units dedicated to specific functions or sets of functions, other
embodiments may include one execution unit or multiple
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execution units that all perform all functions. The scheduler
unit(s) 1656, physical register file(s) unit(s) 1658, and execu-
tion cluster(s) 1660 are shown as being possibly plural
because certain embodiments create separate pipelines for
certain types of data/operations (e.g., a scalar integer pipe-
line, a scalar floating point/packed integer/packed floating
point/vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which the execution cluster
of'this pipeline has the memory access unit(s) 1664). It should
also be understood that where separate pipelines are used, one
or more of these pipelines may be out-of-order issue/execu-
tion and the rest in-order.

The set of memory access units 1664 is coupled to the
memory unit 1670, which includes a data TLB unit 1672
coupled to a data cache unit 1674 coupled to a level 2 (L2)
cache unit 1676. In one exemplary embodiment, the memory
access units 1664 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 1672 in the memory unit 1670. The [.2 cache unit 1676 is
coupled to one or more other levels of cache and eventually to
a main memory.

By way of example, the register renaming, out-of-order
issue/execution core architecture may implement the pipeline
1600 as follows: 1) the instruction fetch 1638 performs the
fetch and length decoding stages 1602 and 1604; 2) the
decode unit 1640 performs the decode stage 1606; 3) the
rename/allocator unit 1652 performs the allocation stage
1608 and renaming stage 1610; 4) the scheduler unit(s) 1656
performs the schedule stage 1612; 5) the physical register
file(s) unit(s) 1658 and the memory unit 1670 perform the
register read/memory read stage 1614; the execution cluster
16160 perform the execute stage 1616; 6) the memory unit
1670 and the physical register file(s) unit(s) 1658 perform the
write back/memory write stage 1618; 7) various units may be
involved in the exception handling stage 1622; and 16) the
retirement unit 1654 and the physical register file(s) unit(s)
1658 perform the commit stage 1624.

The core 1690 may support one or more instructions sets
(e.g., the x166 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with additional extensions such as NEON) of ARM
Holdings of Sunnyvale, Calif.).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes a sepa-
rate instruction and data cache units 1634/1674 and a shared
L2 cache unit 1676, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

While the present disclosure has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and variations
therefrom. It is intended that the appended claims cover all
such modifications and variations as fall within the true spirit
and scope of this present disclosure.

In the description herein, numerous specific details are set
forth, such as examples of specific types of processors and
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system configurations, specific hardware structures, specific
architectural and micro architectural details, specific register
configurations, specific instruction types, specific system
components, specific measurements/heights, specific proces-
sor pipeline stages and operation etc. in order to provide a
thorough understanding of the present disclosure. It will be
apparent, however, to one skilled in the art that these specific
details need not be employed to practice the present disclo-
sure. In other instances, well known components or methods,
such as specific and alternative processor architectures, spe-
cific logic circuits/code for described algorithms, specific
firmware code, specific interconnect operation, specific logic
configurations, specific manufacturing techniques and mate-
rials, specific compiler implementations, specific expression
of algorithms in code, specific power down and gating tech-
niques/logic and other specific operational details of com-
puter system have not been described in detail in order to
avoid unnecessarily obscuring the present disclosure.

The embodiments are described with reference to hybrid-
threading in specific integrated circuits, such as in computing
platforms or microprocessors. The embodiments may also be
applicable to other types of integrated circuits and program-
mable logic devices. For example, the disclosed embodi-
ments are not limited to desktop computer systems or por-
table computers, such as the Intel® Ultrabooks™ computers.
And may be also used in other devices, such as handheld
devices, tablets, other thin notebooks, systems on a chip
(SOC) devices, and embedded applications. Some examples
othandheld devices include cellular phones, Internet protocol
devices, digital cameras, personal digital assistants (PDAs),
and handheld PCs. Embedded applications typically include
a microcontroller, a digital signal processor (DSP), a system
on a chip, network computers (NetPC), set-top boxes, net-
work hubs, wide area network (WAN) switches, or any other
system that can perform the functions and operations taught
below. It is described that the system can be any kind of
computer or embedded system. The disclosed embodiments
may especially be used for low-end devices, like wearable
devices (e.g., watches), electronic implants, sensory and con-
trol infrastructure devices, controllers, supervisory control
and data acquisition (SCADA) systems, or the like. More-
over, the apparatuses, methods, and systems described herein
are not limited to physical computing devices, but may also
relate to software optimizations for energy conservation and
efficiency. As will become readily apparent in the description
below, the embodiments of methods, apparatuses, and sys-
tems described herein (whether in reference to hardware,
firmware, software, or a combination thereof) are vital to a
‘green technology’ future balanced with performance consid-
erations.

Although the embodiments herein are described with ref-
erence to a processor, other embodiments are applicable to
other types of integrated circuits and logic devices. Similar
techniques and teachings of embodiments of the present dis-
closure can be applied to other types of circuits or semicon-
ductor devices that can benefit from higher pipeline through-
put and improved performance. The teachings of
embodiments of the present disclosure are applicable to any
processor or machine that performs data manipulations.
However, the present disclosure is not limited to processors or
machines that perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit,
or 16 bit data operations and can be applied to any processor
and machine in which manipulation or management of data is
performed. In addition, the description herein provides
examples, and the accompanying drawings show various
examples for the purposes of illustration. However, these
examples should not be construed in a limiting sense as they
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are merely intended to provide examples of embodiments of
the present disclosure rather than to provide an exhaustive list
of all possible implementations or embodiments of the
present disclosure.

Although the below examples describe instruction han-
dling and distribution in the context of execution units and
logic circuits, other embodiments of the present disclosure
can be accomplished by way of a data or instructions stored
on a machine-readable, tangible medium, which when per-
formed by a machine cause the machine to perform functions
consistent with at least one embodiment of the disclosure. In
one embodiment, functions associated with embodiments of
the present disclosure are embodied in machine-executable
instructions. The instructions can be used to cause a general-
purpose or special-purpose processor that is programmed
with the instructions to perform the steps of the present dis-
closure. Embodiments of the present disclosure may be pro-
vided as a computer program product or software which may
include a machine or computer-readable medium having
stored thereon instructions which may be used to program a
computer (or other electronic devices) to perform one or more
operations according to embodiments of the present disclo-
sure. Alternatively, operations of embodiments of the present
disclosure might be performed by specific hardware compo-
nents that contain fixed-function logic for performing the
operations, or by any combination of programmed computer
components and fixed-function hardware components.

Instructions used to program logic to perform embodi-
ments of the disclosure can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
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via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present disclo-
sure.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the micro-controller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if'it
is designed, coupled, and/or interconnected to perform said
designated task. As a purely illustrative example, a logic gate
may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock. Note
once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent state
the apparatus, hardware, and/or element is designed to per-
form a particular task when the apparatus, hardware, and/or
element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1’s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
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such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The following examples pertain to further embodiments.

Example 1 is an integrated circuit including a memory
device including a first portion and a second portion, where
the first portion is a first type of content addressable memory
(CAM) with a first set of cells and the second portion is a
second type of CAM with a second set of cells, where the first
set of cells is smaller than the second set of cells, a decom-
pression accelerator coupled to the memory device, the
decompression accelerator to generate a plurality of length
codes, where each of the plurality of length codes comprise at
least one bit, where the plurality of length codes are generated
using a symbol received from an encoded data stream that
includes a plurality of symbols, and store the plurality of
length codes in the first portion of the memory device in an
order according to their respective number of bits.

In Example 2, the subject matter of Example 1, where the
memory device includes a 15-bit array, where the first portion
includes a 9-bit array and where the second portion includes
a 6-bit array.

In Example 3, the subject matter of any one of Examples
1-2 further including a core coupled to the decompression
accelerator, the core to decode the plurality of length codes
for a decoded data stream.

In Example 4, the subject matter of any one of Examples
1-3, where the first portion of the memory device includes an
array of a first length, where the second portion of the memory
device includes an array of a second length, where a total
length of the memory device is equal to at least a sum of the
first length and the second length.

In Example 5, the subject matter of any one of Examples
1-4, where when decoding the plurality of length codes, the
core is to identify a block of data of the encoded data stream,
cause a lookup operation for the block of data in the memory
device, and receive a decoded block of data from a register file
that is associated with the memory device.

In Example 6, the subject matter of any one of Examples
1-5, where the first portion of the memory device includes a
plurality of partitions, where the register file is divided into a
number of parts equal to the number of the plurality of parti-
tions, where each partition is to store one of the parts of the
register file, where when causing the lookup operation for the
block of data in the memory device, the core is to cause a
lookup operation for the block of data in each of the plurality
of partitions of the first portion of the memory device, where
amatch for the lookup operation corresponds to arow inaone
of the parts of the register file.

In Example 7, the subject matter of any one of Examples
1-6, where the first set of cells is smaller in physical size than
the second set of cells.
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In Example 8, the subject matter of any one of Examples
1-7, where the first set of cells has a smaller data capacity than
the second set of cells.

In Example 9, the subject matter of any one of Examples
1-8, where the first set of first cells includes a plurality of first
cells and the second set of cells includes a plurality of second
cells, where each of the plurality of first cells is a binary cell
and where each of the plurality of second cells is a ternary
cell.

In Example 10, the subject matter of any one of Examples
1-9, where the first portion of the memory device includes a
register file to store decompressed data associated with the
encoded data stream.

In Example 11, the subject matter of any one of Examples
1-10, where the memory device is to store a shift value to
indicate a shift amount value, where the shift value is deter-
mined using a number of bits in a code length and a number of
bits that were consumed by the decompression accelerator.

Example 12 is a method including receiving, by a process-
ing device, a first data block of a compressed data stream, the
first data block having an associated first header, parsing the
first header of the first data block to identify a first code length
of'the first data block, generating, by the processing device, a
first address for the first data block, storing the first data block
in a content addressable memory (CAM) in association with
the first address, the CAM including a first portion that
includes a first set of cells and a second portion that includes
a second set of cells, where the first set of cells is smaller than
the second set of cells, receiving a second data block of the
compressed data stream, the second data block having an
associated second header, generating, by the processing
device, a second address for the second data block based on a
second code length in the second header, and storing the
second data block in the first portion of the CAM in an order
with respect to the first code length and the second code
length.

In Example 13, the subject matter of Examples 12, where
the first code length and the second code length are stored in
the first portion of the CAM in an increasing order of code
length.

In Example 14, the subject matter of any one of Examples
12-13, where the first code length is stored in association with
a first counter having a first counter length, where the second
code length is stored in association with a second counter
having a second counter length.

In Example 15, the subject matter of any one of Examples
12-14 further including: receiving a third data block of the
compressed data stream, the third data block having an asso-
ciated third header, generating, by the processing device, a
third address for the third data block based on a third code
length in the third header, and storing the third data block in
the first portion of the CAM in an order with respect to the first
code length, the second code length, and the third code length.

In Example 16, the subject matter of any one of Examples
12-15 further including receiving a symbol associated with
the data stream, performing a lookup operation for a match to
the symbol in the first portion of the CAM, upon identitying
a match to the symbol in the first portion of the CAM, iden-
tifying a corresponding row in a register file, and providing
data from the corresponding row in the register file in an
output data stream.

In Example 17, the subject matter of any one of Examples
12-16 further including receiving a symbol associated with
the data stream, performing a lookup operation for a match to
the symbol in the first portion of the CAM, and when the
lookup operation does not yield a match to the symbol in the
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first portion of the CAM, performing the lookup operation in
the second portion of the CAM.

Example 18 is a non-transitory machine-readable storage
medium including data that, when accessed by a processing
device, cause the processing device to perform operations
including receiving, by the processing device, a first data
block of a compressed data stream, the first data block having
an associated first header, parsing the first header of the first
data block to identify a first code length of the first data block,
generating, by the processing device, a first address for the
first data block, storing the first data block in a content addres-
sable memory (CAM) in association with the first address, the
CAM including a first portion that includes a first set of cells
and a second portion that includes a second set of cells, where
the first set of cells are smaller than the second set of cells,
receiving a second data block of the compressed data stream,
the second data block having an associated second header,
generating, by the processing device, a second address for the
second data block based on a second code length in the second
header, and storing the second data block in the first portion of
the CAM in an order with respect to the first code length and
the second code length.

In Example 19, the subject matter of Examples 18, where
the first code length and the second code length are stored in
the first portion of the CAM in an increasing order of code
length.

In Example 20, the subject matter of any one of Examples
18-19, the operations further including receiving a third data
block of the compressed data stream, the third data block
having an associated third header, generating, by the process-
ing device, a third address for the third data block based on a
third code length in the third header, and storing the third data
block in the first portion of the CAM in an order with respect
to the first code length, the second code length, and the third
code length.

In Example 21, the subject matter of any one of Examples
18-20, the operations further including receiving a symbol
associated with the data stream, performing a lookup opera-
tion for a match to the symbol in the first portion of the CAM,
upon identifying a match to the symbol in the first portion of
the CAM, identifying a corresponding row in a register file,
and providing data from the corresponding row in the register
file in an output data stream.

In Example 22, the subject matter of any one of Examples
18-21, where the first set of cells has a smaller data capacity
than the second set of cells.

Example 23 is a method including generating, by a pro-
cessing device, a plurality of length codes, where each of the
plurality of length codes comprise at least one bit, where the
plurality of length codes are generated using a symbol
received from an encoded data stream that includes a plurality
of symbols, and storing the plurality of length codes in a
memory device in an order according to their respective num-
ber of bits, the memory device including a first portion and a
second portion, where the first portion is a first type of content
addressable memory (CAM) with a first set of cells and the
second portion is a second type of CAM with a second set of
cells, where the plurality of length codes are to be stored in the
first portion, where the first set of cells is smaller than the
second set of cells.

In Example 24, the subject matter of Example 23, where
the memory device includes a 15-bit array, where the first
portion includes a 9-bit array and where the second portion
includes a 6-bit array.

In Example 25, the subject matter of any one of Examples
23-24 further including decoding the plurality of length codes
for a decoded data stream.
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In Example 26, the subject matter of any one of Examples
23-25, where the first portion of the memory device includes
an array of a first length, where the second portion of the
memory device includes an array of a second length, where a
total length of the memory device is equal to at least a sum of
the first length and the second length.

In Example 27, the subject matter of any one of Examples
23-26, where decoding the plurality of length codes includes
identifying a block of data of the encoded data stream, caus-
ing a lookup operation for the block of data in the memory
device, and receiving a decoded block of data from a register
file that is associated with the memory device.

In Example 28, the subject matter of any one of Examples
23-27, where the first portion of the memory device includes
a plurality of partitions, where the register file is divided into
a number of parts equal to the number of the plurality of
partitions, where each partition is to store one of the parts of
the register file, where causing the lookup operation for the
block of data in the memory device, includes causing a lookup
operation for the block of data in each of the plurality of
partitions of the first portion of the memory device, where a
match for the lookup operation corresponds to a row in a one
of the parts of the register file.

In Example 29, the subject matter of any one of Examples
23-28, where the first set of cells is smaller in physical size
than the second set of cells.

In Example 30, the subject matter of any one of Examples
23-29, where the first set of cells has a smaller data capacity
than the second set of cells.

In Example 31, the subject matter of any one of Examples
23-30, where the first set of first cells includes a plurality of
first cells and the second set of cells includes a plurality of
second cells, where each of the plurality of first cells is a
binary cell and where each of the plurality of second cells is
a ternary cell.

In Example 32, the subject matter of any one of Examples
23-31, where the first portion of the memory device includes
a register file to store decompressed data associated with the
encoded data stream.

In Example 33, the subject matter of any one of Examples
23-32 further including storing a shift value to indicate a shift
amount value, where the shift value is determined using a
number of bits in a code length and a number of bits that were
consumed by the processing device.

Example 34 is a machine-readable storage medium includ-
ing data that, when executed by a processor, cause the pro-
cessor to perform operations including generating, by the
processor, a plurality of length codes, where each of the
plurality of length codes comprise at least one bit, where the
plurality of length codes are generated using a symbol
received from an encoded data stream that includes a plurality
of symbols, and storing the plurality of length codes in a
memory device in an order according to their respective num-
ber of bits, the memory device including a first portion and a
second portion, where the first portion is a first type of content
addressable memory (CAM) with a first set of cells and the
second portion is a second type of CAM with a second set of
cells, where the plurality of length codes are to be stored in the
first portion, where the first set of cells is smaller than the
second set of cells.

In Example 35, the subject matter of Example 34, where
the memory device includes a 15-bit array, where the first
portion includes a 9-bit array and where the second portion
includes a 6-bit array.

In Example 36, the subject matter of any one of Examples
34-35 further including decoding the plurality of length codes
for a decoded data stream.
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In Example 37, the subject matter of any one of Examples
34-36 where the first portion of the memory device includes
an array of a first length, where the second portion of the
memory device includes an array of a second length, where a
total length of the memory device is equal to at least a sum of
the first length and the second length.

In Example 38, the subject matter of any one of Examples
34-37 where decoding the plurality of length codes includes
identifying a block of data of the encoded data stream, caus-
ing a lookup operation for the block of data in the memory
device, and receiving a decoded block of data from a register
file that is associated with the memory device.

In Example 39, the subject matter of any one of Examples
34-38, where the first portion of the memory device includes
a plurality of partitions, where the register file is divided into
a number of parts equal to the number of the plurality of
partitions, where each partition is to store one of the parts of
the register file, where causing the lookup operation for the
block of data in the memory device, includes causing a lookup
operation for the block of data in each of the plurality of
partitions of the first portion of the memory device, where a
match for the lookup operation corresponds to a row in a one
of the parts of the register file.

In Example 40, the subject matter of any one of Examples
34-39, where the first set of cells is smaller in physical size
than the second set of cells.

In Example 41, the subject matter of any one of Examples
34-40, where the first set of cells has a smaller data capacity
than the second set of cells.

In Example 42, the subject matter of any one of Examples
34-41, where the first set of first cells includes a plurality of
first cells and the second set of cells includes a plurality of
second cells, where each of the plurality of first cells is a
binary cell and where each of the plurality of second cells is
a ternary cell.

In Example 43, the subject matter of any one of Examples
33-42, where the first portion of the memory device includes
a register file to store decompressed data associated with the
encoded data stream.

In Example 44, the subject matter of any one of Examples
33-43 further including storing a shift value to indicate a shift
amount value, where the shift value is determined using a
number of bits in a code length and a number of bits that were
consumed by the processing device.

Example 45 is an apparatus including means for generat-
ing, by a processing device, a plurality of length codes, where
each of the plurality of length codes comprise at least one bit,
where the plurality of length codes are generated using a
symbol received from an encoded data stream that includes a
plurality of symbols, and means for storing the plurality of
length codes in a memory device in an order according to their
respective number of bits, the memory device including a first
portion and a second portion, where the first portion is a first
type of content addressable memory (CAM) with a first set of
cells and the second portion is a second type of CAM with a
second set of cells, where the plurality of length codes are to
be stored in the first portion, where the first set of cells is
smaller than the second set of cells.

In Example 46, the subject matter of Example 45, where
the memory device includes a 15-bit array, where the first
portion includes a 9-bit array and where the second portion
includes a 6-bit array.

In Example 47, the subject matter of any one of Examples
45-46 further including means for decoding the plurality of
length codes for a decoded data stream.

In Example 48, the subject matter of any one of Examples
45-47, where the first portion of the memory device includes



US 9,306,596 B2

33

an array of a first length, where the second portion of the
memory device includes an array of a second length, where a
total length of the memory device is equal to at least a sum of
the first length and the second length.

In Example 49, the subject matter of any one of Examples
45-48, where the means for decoding the plurality of length
codes includes means for identifying a block of data of the
encoded data stream, means for causing a lookup operation
for the block of data in the memory device, and means for
receiving a decoded block of data from a register file that is
associated with the memory device.

In Example 50, the subject matter of any one of Examples
45-49, where the first portion of the memory device includes
a plurality of partitions, where the register file is divided into
a number of parts equal to the number of the plurality of
partitions, where each partition is to store one of the parts of
the register file, where causing the lookup operation for the
block of data in the memory device, includes causing a lookup
operation for the block of data in each of the plurality of
partitions of the first portion of the memory device, where a
match for the lookup operation corresponds to a row in a one
of the parts of the register file.

In Example 51, the subject matter of any one of Examples
45-50, where the first set of cells is smaller in physical size
than the second set of cells.

In Example 52, the subject matter of any one of Examples
45-51, where the first set of cells has a smaller data capacity
than the second set of cells.

In Example 53, the subject matter of any one of Examples
45-52, where the first set of first cells includes a plurality of
first cells and the second set of cells includes a plurality of
second cells, where each of the plurality of first cells is a
binary cell and where each of the plurality of second cells is
a ternary cell.

In Example 54, the subject matter of any one of Examples
45-53, where the first portion of the memory device includes
a register file to store decompressed data associated with the
encoded data stream.

In Example 55, the subject matter of any one of Examples
45-54, further including means for storing a shift value to
indicate a shift amount value, where the shift value is deter-
mined using a number of bits in a code length and a number of
bits that were consumed by the processing device.

Example 56 is an apparatus including means for receiving
a first data block of a compressed data stream, the first data
block having an associated first header, means for parsing the
first header of the first data block to identify a first code length
of'the first data block, means for generating a first address for
the first data block, means for storing the first data block in a
content addressable memory (CAM) in association with the
first address, the CAM including a first portion that includes
a first set of cells and a second portion that includes a second
set of cells, where the first set of cells is smaller than the
second set of cells, means for receiving a second data block of
the compressed data stream, the second data block having an
associated second header, means for generating a second
address for the second data block based on a second code
length in the second header, and means for storing the second
data block in the first portion of the CAM in an order with
respect to the first code length and the second code length.

In Example 57, the subject matter of Example 56, where
the first code length and the second code length are stored in
the first portion of the CAM in an increasing order of code
length.

In Example 58, the subject matter of any one of Examples
56-57, where the first code length is stored in association with
a first counter having a first counter length, where the second
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code length is stored in association with a second counter
having a second counter length.

In Example 59, the subject matter of any one of Examples
56-58 further including means for receiving a third data block
of'the compressed data stream, the third data block having an
associated third header, means for generating a third address
for the third data block based on a third code length in the third
header, and means for storing the third data block in the first
portion of the CAM in an order with respect to the first code
length, the second code length, and the third code length.

In Example 60, the subject matter of any one of Examples
56-59 further including means for receiving a symbol asso-
ciated with the data stream, performing a lookup operation for
a match to the symbol in the first portion of the CAM, means
for identifying a corresponding row in a register file upon
identifying a match to the symbol in the first portion of the
CAM, and means for providing data from the corresponding
row in the register file in an output data stream.

In Example 61, the subject matter of any one of Examples
56-60 further including means for receiving a symbol asso-
ciated with the data stream, means for performing a lookup
operation for a match to the symbol in the first portion of the
CAM, and means for performing the lookup operation in the
second portion of the CAM when the lookup operation does
not yield a match to the symbol in the first portion of the
CAM.

Example 62 is a non-transitory machine-readable storage
medium including data that, when accessed by a processing
device, cause the processing device to perform operations
including generating, by a processing device, a plurality of
length codes, where each of the plurality of length codes
comprise at least one bit, where the plurality of length codes
are generated using a symbol received from an encoded data
stream that includes a plurality of symbols, and storing the
plurality of length codes in a memory device in an order
according to their respective number of bits, the memory
device including a first portion and a second portion, where
the first portion is a first type of content addressable memory
(CAM) with a first set of cells and the second portion is a
second type of CAM with a second set of cells, where the
plurality of length codes are to be stored in the first portion,
where the first set of cells is smaller than the second set of
cells.

In Example 63, the subject matter of Example 62 further
including decoding the plurality oflength codes fora decoded
data stream.

Example 64 is a machine readable medium including code,
when executed, to cause a machine to perform the method of
any one of Examples 12 to 17.

Example 65 is a machine readable medium including code,
when executed, to cause a machine to perform the method of
any one of Examples 23 to 33.

Example 66 is an apparatus including means for perform-
ing the method of any one of Examples 12 to 17.

Example 67 is an apparatus including means for perform-
ing the method of any one of Examples 23 to 33.

Example 68 is an apparatus including a processor config-
ured to perform the method of any one of Examples 12to 17.

Example 69 is an apparatus including a processor config-
ured to perform the method of any one of Examples 23 to 33.

Example 70 is a system including a peripheral device, a
memory device including a first portion and a second portion,
where the first portion is a first type of content addressable
memory (CAM) with a first set of cells and the second portion
is a second type of CAM with a second set of cells, where the
first set of cells is smaller than the second set of cells, a
decompression accelerator coupled to the memory device, the
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decompression accelerator to generate a plurality of length
codes, where each of the plurality of length codes comprise at
least one bit, where the plurality of length codes are generated
using a symbol received from an encoded data stream that
includes a plurality of symbols, and store the plurality of
length codes in the first portion of the memory device in an
order according to their respective number of bits.

Example 71 is a machine-readable storage including
machine-readable instructions, when executed, to implement
a method or realize an apparatus as claimed in any preceding
Example.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-
able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc., which are to be distinguished from the non-transitory
mediums that may receive information there from.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present disclosure. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the present specification, a detailed description has been
given with reference to specific example embodiments. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
The operations are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
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numbers or the like. The blocks described herein can be
hardware, software, firmware or a combination thereof.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “defining,” issuing,” “link-

2

receiving,” “determining,

ing,” “associating,” “obtaining,” “authenticating,” “prohibit-
ing,” “executing,” “requesting,” “communicating,” “monitor-
ing,” “calculating,” or the like, refer to the actions and

processes of a computing system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (e.g., electronic) quantities within the com-
puting system’s registers and memories into other data
similarly represented as physical quantities within the com-
puting system memories or registers or other such informa-
tion storage, transmission or display devices.

The words “example” or “exemplary” are used herein to
mean serving as an example, instance or illustration. Any
aspect or design described herein as “example’ or “exem-
plary” is not necessarily to be construed as preferred or
advantageous over other aspects or designs. Rather, use of the
words “example” or “exemplary” is intended to present con-
cepts in a concrete fashion. As used in this application, the
term “or” is intended to mean an inclusive “or” rather than an
exclusive “or.”” That is, unless specified otherwise, or clear
from context, “X includes A or B” is intended to mean any of
the natural inclusive permutations. That is, if X includes A; X
includes B; or X includes both A and B, then “X includes A or
B” is satisfied under any of the foregoing instances. In addi-
tion, the articles “a” and “an” as used in this application and
the appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from con-
text to be directed to a singular form. Moreover, use of the
term “an embodiment” or “one embodiment” or “an imple-
mentation” or “one implementation” throughout is not
intended to mean the same embodiment or implementation
unless described as such. Also, the terms “first,” “second,”
“third,” “fourth,” etc. as used herein are meant as labels to
distinguish among different elements and may not necessar-
ily have an ordinal meaning according to their numerical
designation.

What is claimed is:
1. An integrated circuit comprising:
a memory device comprising a first portion and a second
portion, wherein the first portion is a first type of content
addressable memory (CAM) with a first set of cells and
the second portion is a second type of CAM with a
second set of cells, wherein the first set of cells is smaller
than the second set of cells;
a decompression accelerator coupled to the memory
device, the decompression accelerator to:
generate a plurality of length codes, wherein each of the
plurality of length codes comprise at least one bit,
wherein the plurality of length codes are generated
using a symbol received from an encoded data stream
that includes a plurality of symbols; and

store the plurality of length codes in the first portion of
the memory device in an order according to their
respective number of bits; and

a core coupled to the decompression accelerator, the core to
decode the plurality of length codes for a decoded data
stream.
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2. The integrated circuit of claim 1, wherein the memory
device comprises a 15-bit array, wherein the first portion
comprises a 9-bit array and wherein the second portion com-
prises a 6-bit array.

3. The integrated circuit of claim 1, wherein the first por-
tion of the memory device comprises an array of a first length,
wherein the second portion of the memory device comprises
an array of a second length, wherein a total length of the
memory device is equal to at least a sum of the first length and
the second length.

4. The integrated circuit of claim 3, wherein when decod-
ing the plurality of length codes, the core is to:

identify a block of data of the encoded data stream;

cause a lookup operation for the block of data in the

memory device; and

receive a decoded block of data from a register file that is

associated with the memory device.

5. The integrated circuit of claim 4, wherein the first por-
tion of the memory device comprises a plurality of partitions,
wherein the register file is divided into a number of parts equal
to the number of the plurality of partitions, wherein each
partition is to store one of the parts of the register file, wherein
when causing the lookup operation for the block of data in the
memory device, the core is to cause a lookup operation for the
block of data in each of the plurality of partitions of the first
portion of the memory device, wherein a match for the lookup
operation corresponds to a row in a one of the parts of the
register file.

6. The integrated circuit of claim 1, wherein the first set of
cells is smaller in physical size than the second set of cells.

7. The integrated circuit of claim 1, wherein the first set of
cells has a smaller data capacity than the second set of cells.

8. The integrated circuit of claim 7, wherein the first set of
first cells comprises a plurality of first cells and the second set
of cells comprises a plurality of second cells, wherein each of
the plurality of first cells is a binary cell and wherein each of
the plurality of second cells is a ternary cell.

9. The integrated circuit of claim 1, wherein the first por-
tion of the memory device comprises a register file to store
decompressed data associated with the encoded data stream.

10. The integrated circuit of claim 1, wherein the memory
device is to store a shift value to indicate a shift amount value,
wherein the shift value is determined using a number ofbits in
a code length and a number of bits that were consumed by the
decompression accelerator.

11. A method comprising:

receiving, by a processing device, a first data block of a

compressed data stream, the first data block having an
associated first header;

parsing the first header of the first data block to identify a

first code length of the first data block;

generating, by the processing device, a first address for the

first data block;

storing the first data block in a content addressable memory

(CAM) in association with the first address, the CAM
comprising a first portion that comprises a first set of
cells and a second portion that comprises a second set of
cells, wherein the first set of cells is smaller than the
second set of cells;

receiving a second data block of the compressed data

stream, the second data block having an associated sec-
ond header;

generating, by the processing device, a second address for

the second data block based on a second code length in
the second header; and

10

15

20

25

30

35

40

45

50

55

60

65

38

storing the second data block in the first portion of the
CAM in an order with respect to the first code length and
the second code length.
12. The method of claim 11, wherein the first code length
and the second code length are stored in the first portion of the
CAM in an increasing order of code length.
13. The method of claim 11, wherein the first code length is
stored in association with a first counter having a first counter
length, wherein the second code length is stored in associa-
tion with a second counter having a second counter length.
14. The method of claim 11 further comprising:
receiving a third data block of the compressed data stream,
the third data block having an associated third header;

generating, by the processing device, a third address for the
third data block based on a third code length in the third
header; and

storing the third data block in the first portion of the CAM

in an order with respect to the first code length, the
second code length, and the third code length.

15. The method of claim 11 further comprising:

receiving a symbol associated with the data stream;

performing a lookup operation for a match to the symbol in

the first portion of the CAM;

upon identifying a match to the symbol in the first portion

of the CAM, identifying a corresponding row in a reg-
ister file; and

providing data from the corresponding row in the register

file in an output data stream.

16. The method of claim 11 further comprising:

receiving a symbol associated with the data stream;

performing a lookup operation for a match to the symbol in

the first portion of the CAM; and

when the lookup operation does not yield a match to the

symbol in the first portion of the CAM, performing the
lookup operation in the second portion of the CAM.

17. A non-transitory machine-readable storage medium
including data that, when accessed by a processing device,
cause the processing device to perform operations compris-
ing:

receiving, by the processing device, a first data block of a

compressed data stream, the first data block having an
associated first header;

parsing the first header of the first data block to identify a

first code length of the first data block;

generating, by the processing device, a first address for the

first data block;

storing the first data block in a content addressable memory

(CAM) in association with the first address, the CAM
comprising a first portion that comprises a first set of
cells and a second portion that comprises a second set of
cells, wherein the first set of cells are smaller than the
second set of cells;

receiving a second data block of the compressed data

stream, the second data block having an associated sec-
ond header;

generating, by the processing device, a second address for

the second data block based on a second code length in
the second header; and

storing the second data block in the first portion of the

CAM in an order with respect to the first code length and
the second code length.

18. The non-transitory machine-readable storage medium
of'claim 17, wherein the first code length and the second code
length are stored in the first portion of the CAM in an increas-
ing order of code length.

19. The non-transitory machine-readable storage medium
of claim 17, the operations further comprising:
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receiving a third data block of the compressed data stream,
the third data block having an associated third header;
generating, by the processing device, a third address for the
third data block based on a third code length in the third
header; and
storing the third data block in the first portion of the CAM
in an order with respect to the first code length, the
second code length, and the third code length.
20. The non-transitory machine-readable storage medium
of claim 17, the operations further comprising:
receiving a symbol associated with the data stream;
performing a lookup operation for a match to the symbol in
the first portion of the CAM;
upon identifying a match to the symbol in the first portion
of the CAM, identifying a corresponding row in a reg-
ister file; and
providing data from the corresponding row in the register
file in an output data stream.
21. The non-transitory machine-readable storage medium
of claim 17, wherein the first set of cells has a smaller data
capacity than the second set of cells.
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